The Histone Deacetylase Sirtuin 1 Is Reduced in Systemic Sclerosis and Abrogates Fibrotic Responses by Targeting Transforming Growth Factor β Signaling.

نویسندگان

  • Jun Wei
  • Archit K Ghosh
  • Haiyan Chu
  • Feng Fang
  • Monique E Hinchcliff
  • Jiucun Wang
  • Roberta Goncalves Marangoni
  • John Varga
چکیده

OBJECTIVE Persistent fibroblast activation underlies skin fibrosis in systemic sclerosis (SSc), but the transcriptional and epigenetic mechanisms controlling this process are not well understood. In view of the potent influence of acetylation status governing tissue fibrosis, we undertook this study to investigate the expression of the antiaging deacetylase enzyme sirtuin 1 (SIRT1) in SSc and its effects on fibrotic responses in vitro and in vivo. METHODS Tissue expression of SIRTs was interrogated from publicly available genome-wide expression data sets and by immunohistochemistry. The effects of SIRT1 on modulating fibrotic responses, as well as the underlying mechanisms, were examined in human and mouse fibroblasts in culture and in an experimental fibrosis model in the mouse. RESULTS Analysis of transcriptome data revealed a selective reduction of SIRT1 messenger RNA (mRNA) levels in SSc skin biopsy samples as well as a negative correlation of SIRT1 mRNA with the skin score. Cellular SIRT1 levels were suppressed in normal fibroblasts exposed to hypoxia or platelet-derived growth factor and were constitutively down-regulated in SSc fibroblasts. Activation of SIRT1 attenuated fibrotic responses in skin fibroblasts and skin organ cultures, while genetic or pharmacologic inhibition of SIRT1 had profibrotic effects. The antifibrotic effects of SIRT1 were due in part to decreased expression and function of the acetyltransferase p300. In mice, experimentally induced skin fibrosis was accompanied by reduced SIRT1 expression in lesional tissue fibroblasts, and both fibrosis and loss of SIRT1 in these mice were mitigated by treatment with a SIRT1 activator. CONCLUSION SIRT1 has antifibrotic effects, and its reduced tissue expression in patients with SSc might have a direct causal role in progression of fibrosis. Pharmacologic modulation of SIRT1 in these patients therefore might represent a potential treatment strategy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of a Suggested Model of Fibrosis in Human Dermal Fibroblasts by Serum from Systemic Sclerosis Patients with Transforming Growth Factor β Induced in vitro Model

Systemic sclerosis (SSc) is a chronic autoimmune disease, featuring fibrosis in multiple organs. The serum from SSc patients contain inflammatory mediators, contributing to SSc pathogenesis and could be used to develop cell culture models. Here, we compared the fibrotic effects of serum samples from SSc patients with TGFβ1 on human dermal fibroblasts (HDFs). HDF cells were cultured in four diff...

متن کامل

p300 is elevated in systemic sclerosis and its expression is positively regulated by TGF-β: epigenetic feed-forward amplification of fibrosis

Fibrosis, the hallmark of systemic sclerosis (SSc), is characterized by persistent fibroblast activation triggered by transforming growth factor-β (TGF-β). As the acetyltransferase p300 has a key role in fibrosis and its availability governs the intensity of fibrotic responses, we investigated p300 expression in SSc and the molecular basis of its regulation. We found that expression of p300 was...

متن کامل

SIRT3 is attenuated in systemic sclerosis skin and lungs, and its pharmacologic activation mitigates organ fibrosis

Constitutive fibroblast activation is responsible for organ fibrosis in fibrotic disorders including systemic sclerosis (SSc), but the underlying mechanisms are not fully understood, and effective therapies are lacking. We investigated the expression of the mitochondrial deacetylase sirtuin 3 (SIRT3) and its modulation by hexafluoro, a novel fluorinated synthetic honokiol analogue, in the conte...

متن کامل

Transforming growth factor-beta in systemic sclerosis (scleroderma).

Deregulated transforming growth factor-beta (TGF-beta) activity and responses play prominent roles in the pathogenesis of systemic sclerosis (SSc), a chronic and progressive connective tissue disease characterized by fibrosis of the skin and internal organs. Systemic sclerosis has highly heterogeneous clinical manifestations, and patients can be classified into multiple subgroups on the basis o...

متن کامل

NADPH oxidase-dependent redox signaling in TGF-β-mediated fibrotic responses☆

Uncontrolled fibrosis in organs like heart, kidney, liver and lung is detrimental and may lead to end-stage organ failure. Currently there is no effective treatment for fibrotic disorders. Transforming growth factor (TGF)-β has a fundamental role in orchestrating the process of fibrogenesis; however, interventions directly targeting TGF-β would have undesired systemic side effects due to the mu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Arthritis & rheumatology

دوره 67 5  شماره 

صفحات  -

تاریخ انتشار 2015